Feb 19, 2011

CPO Physics First in Baltimore

1 comments
In December, I drove down to Baltimore to observe a few Physics First classes in the Baltimore City Public Schools. There are about a dozen schools in Baltimore that made the switch to Physics First two years ago, and I visited two of them. It's taken me until now to process my visit thoroughly enough to say something concise and substantial about what I witnessed. Public schools in Baltimore are struggling, and teachers and administrators in the system are faced with great challenges every day. All the individuals I spoke with or wrote to are working hard to find creative solutions, and the implementation of Physics First should be seen through this lens.

As I understand it, in 2008 the central administration of the Baltimore City Public School System (BCPSS) announced to individual high schools an opportunity to be a part of an experimental phase of Physics First implementation. The reasons for this push seem to be in a large part due to a need to prepare students for the Maryland State "High School Assessments" (HSA) in algebra and biology. It was thought that since physics provides good opportunities for application of algebra techniques, teaching physics earlier would better prepare students for this algebra test. The students' math skills are indeed one of the challenges faced by Baltimore's teachers. While watching students doing a lab on the reflection of a light ray off a plane mirror, I noticed that some students were experiencing significant difficulty measuring angles with a protractor. It was clear that activity was exposing them to real-world applications of math. Though I didn't notice any questions concerning angles on the sample HSA I looked through, I have no doubt that students' algebra skills are developed in the physics course. However, one teacher mentioned that she takes a full week away from her physics curriculum in January to do algebra test preparations, and hearing this made me a little uneasy. Physics class should be about learning physics, not about doing algebra.

The physics classes use Hsu's CPO Physics: A First Course, and its accompanying lab manual and equipment. Teachers at each school are expected to cover four of six possible units in the course. The CPO equipment is well-designed and very sturdy, but expensive, and each classroom had only enough equipment for four lab stations. Teachers seemed fairly satisfied with both the text and the lab book, but one felt that the text was far above the reading level of her students. My main criticism of the CPO course was that it reflects none of the insight that PER has gained into how students learn physics. The content of the course places emphasis on memorizing terms and methods, and the labs encourage students to simply follow the directions that have been laid out for them. On some level this exposure to physics concepts is certainly valuable, but Physics First offers a chance to do much more.

The two teachers I saw had very different approaches to classroom management. One teacher began each class with a "Do Now" activity, and rewarded students who were working on this problem with a stamp on an index card that could later be redeemed for small prizes. With the use of a projector (which she had purchased with her own money for use in her classroom!), she gave a short lesson, then demonstrated the procedure of the day's lab. With ten minutes of patient, attentive instruction, she was able to get the entire class working on a lab activity, and by the end of the class period every group had completed the lab. Though this activity was roughly one third of what CPO guidelines suggest could be completed in one class period, this teacher was familiar with the pace of her class and willing to work patiently to accomplish a realistic goal. The other teacher felt she could not allow students to work independently with the lab materials because the students would try to break the equipment. She has had problems with this in the past. Instead, students spent most of the class period copying lab instructions out of the lab book into a spiral-bound notebook, a trick she employs "to keep the class settled." She walked around the room with one set of lab materials and supervised closely while students carried out discrete steps of the procedure for few minutes at a time.

Though the methods used by the first teacher seemed more successful when compared to those of the second teacher, I don't think the CPO curriculum made it easy for either teacher to encourage students to feel ownership of the topics they were studying. In my view, this aspect of a student's experience is essential to true learning, and needs to be at the center of any physics class. It was obvious to me that both were extremely passionate, hardworking, teachers committed to passing on a love of science to their students. But in an environment where students are expected to memorize terms and follow abstract steps in a procedure without any internal motivation for doing so, it's up to the teacher to synthesize that motivation. Good teaching can certainly encourage motivation in students, and I'm not suggesting that a more student-centered curriculum would eliminate the need for effective classroom management. Students' lack of motivation (even active, very vocal resistance to the work being done...) was a challenge common to both these classes, and every teacher in every classroom employs their own methods for addressing this challenge. My experience teaching at a small New York private school was worlds away from what these Baltimore teachers face every day, but I believe that the idea that students must own their knowledge is common to all classrooms. Any Physics First curriculum that is to be truly successful on a wide scale must encourage students to actually experience a personal, intellectual connection to the material they're studying.

This is one thing that has continued to impress me about Modeling Instruction. Not only does Modeling employ a student-centered approach throughout every unit, but any teacher who is expected to teach a course using Modeling methods must undergo training to learn how to use this approach. Teachers of the CPO curriculum in Baltimore, in contrast, get one professional development day every year to learn how to use the lab equipment. (The first teacher I mentioned above had received more extensive training in science education from a school in Washington DC.) A lot of education reform these days seems to be centered around identifying good and bad teachers, but it seems to me that the effectiveness of a good teacher lies mostly in providing a framework of motivation for the students in their class. If the curriculum itself is able to engage students in a way that unleashes their own internal motivation, then training of teachers should be specifically designed to facilitate this process.
Continue reading →
Jan 1, 2011

Glossary

0 comments
AAPT - American Association of Physics Teachers
AP Physics - a standardized curriculum of high school physic managed by the College Board, offered in three categories: A, B, and C
BCP - Biology, Chemistry, Physics - referring to the most traditional and common sequence of high school science classes where biology is taught in ninth grade (see PCB)
CASTLE - Capacitor-Aided System for Teaching and Learning Electricity - an approach to teaching Electricity and Magnetism, written by Melvin S. Steinberg and Camille Wainwright
ComPADRE - an online physics and astronomy education community
FCI - Force Concept Inventory - a diagnostic test used to gauge student understanding of Newtonian concepts of force and motion, originally developed by D. Hestenes, I Halloun, and D. Wells
IB Physics - a physics curriculum standardized for the International Baccalaureate Diploma Programme
inquiry - an instructional method based in open learning, where students are led to discover concepts or phenomena by exploration and experiment, rather than being told an expected outcome explicitly
Lawson's Classroom Test of Scientific Reasoning - a test developed by Anton Lawson to assess scientific reasoning skills, such as proportional reasoning and how to properly control variables
Modeling Instruction - a notably successful method of physics instruction categorized by inquiry-based labs and classroom discussions based around whiteboarding.  Originally developed at Arizona State University, Modeling is gaining in popularity and Modeling workshops are offered every summer in dozens of locations across the country.
MBT - mechanics baseline test - a diagnostic instrument designed to cover a wider range of applications than the FCI
operational definition - a definition of a term given in terms of a procedure that can be followed to determine its quantity or quality (ex: weight can be defined operationally as the value that is read on a spring scale when the object is hung from the scale in the absence of forces other than gravity and the force of the scale itself.)
paradigm lab - in Modeling Instruction, a lab designed to introduce a relationship between measurable variables, by investigating this relationship directly without explaining it or giving it a name
PCB - Physics, Chemistry, Biology - referring to a sequence of high school science classes where physics is taught in ninth grade (see BCP)
PER - Physics Education Research - "an area of pedagogical research that seeks to improve methods used to teach physics" (Wikipedia)
PhET - a marvelous collection of web-based interactive simulations used in science and math education
Physics First - a philosophy of science education based in the belief that physics should be taught in ninth grade, before chemistry and biology.
whiteboarding - a pedagogical technique in which large (2' x 3') whiteboards and dry erase markers are used by students to record a solution to a physics problem or results from a lab investigation
Physics Regents - a NY state-standardized test in high school physics
SDI Labs - Socratic Dialogue-Inducing labs are labs designed to encourage students to think like scientists and engage students creatively in constructing their own understanding of physics concepts
TPT - The Physics Teacher magazine, a monthly journal devoted to teaching physics at all levels
Continue reading →
Dec 22, 2010

Newton's 2nd Law Survey

2 comments
I got myself into some trouble yesterday while out to breakfast with a few friends. Our conversation was perfectly civil until I brought up an idea for an informal research project I'd been curious about taking on to reveal common misconceptions about Newton's 2nd law. I'd been imagining walking the streets of New York City with a microphone and performing an informal survey of how people answer a question such as, "Why does an egg break against the floor when you drop it?"

My friends and I first discussed the logistics of such an operation: whether a person on the street is more or less likely to walk hastily away if the interviewer is wearing a lab coat and bow tie... or maybe even just holding a clipboard. We agreed that it would be important to record the audio, so I could go back and listen carefully to the wording of the answers.

I then gave my friends an opportunity to respond to the question in their own words, and this is where the trouble/fun began. I got a variety of answers, such as "the force of gravity collides with the force of the floor and the egg gets caught in the middle." I expanded the question to include an egg breaking when thrown against a horizontal wall, and these answers included "the egg is too brittle withstand the force of your throw when that force encounters the resistance of wall." I, unfortunately, did not record the audio, so I can't give you the precise responses, but the most relevant point here is that I felt that their answers reflected some common misconceptions about Newton's 2nd law.

However, when I revealed to my friends that they'd answered the question incorrectly, they all got very defensive. They felt that a) I had tried to trap them into giving incorrect answers by asking an unclear question,
b) I had tempted them with incorrect reasoning by paraphrasing answers I knew were incorrect ("It sounds like you're saying..."), and c) I was nitpicking about the precise definitions of words like "force" and "inertia," rather than focusing on the conceptual validity of a response.

Their first two criticisms were certainly valid. My friends said afterward that they had been focusing on what aspects of the structure of the egg shell cause it to break, in contrast to "a steel egg." They felt that my clarifying questions interfered with their reasoning process unfairly, and that my facial expressions and tone of voice helped to convince them that these incorrect explanations were in fact correct. When they finally learned that this explanation was incorrect, they felt betrayed and angry. One friend remarked that treating a person on the street in this way might get me punched in the face.

The third criticism, however, is much more complicated. When I ask this question, I am most interested in whether the conceptual framework of the answer is correct: whether the individual is invoking the spirit of Newton's laws in their answer. However, I believe strongly that some mistakes in terminology do reflect actual flaws in understanding. If someone doesn't use the word "force" at all (the word push is equally valid in this context), I would certainly be satisfied with answer that was conceptually correct: The table had to push against the egg really hard to stop it quickly, and eggs break when they get pushed that hard. But is it possible for a conceptually valid answer to misuse the word "force" to mean inertia? I would say no, that if someone is using that same word "force" to describe the interaction between the floor and the egg, then this reflects true misunderstanding of the force concept.

If I'm actually going to go out on the street and ask people this question, I might need to change a few things:

• The question needs revision. For starters, an egg doesn't break when you drop it, it breaks with it hits the floor! Perhaps this prompt would be better: Imagine you drop a fragile object on the floor and it breaks. Describe the interactions between any objects involved that result in the breaking of the object.

• I'd need to shut my mouth and let people explain to their own satisfaction with no interference on my part. I imagine this is common practice for researchers collecting data in this way.

• I could ask for an explanation that did not use some words (force, acceleration, mass), so as to prevent confusions arising from confusions with these terms.

• I could ask a series of smaller, simpler questions to hone in more closely on where the misconceptions lay. This is the approach of a multiple choice diagnostic like the FCI, but this approach runs a risk of categorizing people's misconceptions too early in the process.

If I was able to collect adequate data, I could examine the relevance of each of these factors. Since I often use this question as an example of the validity of a conceptual approach to physics education, this would be worth pursuing. I'll keep you posted on my progress!

Continue reading →
Dec 13, 2010

Differentiated Instruction in Physics

0 comments
Physics First provides opportunities for an interesting type of differentiated instruction, where students might arrive at a complex understanding of fundamental concepts through their exposure to a variety of experiences.

I just got back from a trip to Baltimore to observe Physics First classes. I had a chance to visit two of the fifteen Baltimore public schools now teaching CPO Physics First, but the details of this visit will have to wait until I have a chance to wrap my head around it somewhat!

In the meantime, though, I wanted to describe my experience at a monthly workshop for Baltimore physics teachers, called "Physics Works." Physics Works is a monthly gathering of physics teachers in the Baltimore public school system, and my trip happened to coincide with this month's meeting. The day's 2-hour workshop was based on planning differentiated instruction geared toward students' varied intelligences. (This idea was first suggested by Howard Gardner in 1983: humans exhibit multiple different types of intelligences: bodily-kinesthetic, interpersonal, musical, etc. An effective teacher can give students opportunities to participate in activities geared toward their personal strengths.) After discussing the varied strengths of the people in the room, we worked in small groups to complete the following task: develop a plan to teach Newton's laws that considers the multiple intelligences of students in a class.

Most groups in the room interpreted this task to mean providing students with a variety of assessments to choose from. These assessments could range from writing a physics rap to drafting a letter to Isaac Newton to analyzing of video footage from a football game. This is what the teacher running the workshop intended for us all to do, and she provided us with a handout on suggestions for creating a "menu" of options for students to choose from.

It took our group a while to notice this "menu" handout, and as a result our group interpreted the task to mean something very different. Instead of giving students a choice between assessment styles that might suit their strengths, we asked ourselves how we could exploit these intelligences to engage the students through different perspectives. We designed an activity on Newton's third law that began with students pushing each other outward in rolling chairs, to engage them through their bodies. We then imagined students breaking into smaller lab groups to discuss fictional students' interpretations of the results
*, to engage them through words and conversation. Student might then work to design an experiment to collect quantitative data on mass and change in velocity with spring-loaded carts, to engage them through manipulating objects in space. This brought up a discussion of the link between logical-mathematical intelligence and spatial intelligence in data analysis using graphs and pictures, and so on.

What was exciting to me about this activity was that the concept of Newton's third law exists somewhere at the intersection of all these related activities. Students aren't just given the freedom to choose which types of activities they identify with more than others. Instead, they are expected to engage with the physics through each of the various activities, through areas of intelligence that they both excel at and struggle with. This seems similar to
the multiple representations which lie at the heart of Modeling Instruction, discussed in the 11/17 post below.

When taken one-by-one, the "multiple intelligences" seem like a simplistic interpretation of human strengths and weaknesses, and indeed there is much to criticize in Gardner's theory. But perhaps the interaction between these intelligences is something to devote more attention to?



*These fictionalized discussions are used in Lillian McDermott and Peter Shaffer's Physics by Inquiry and Tutorials in Introductory Physics. These programs were developed by the Physics Education Group at the University of Washington, and they are both excellent. The format might look something like this for the activity discussed above:

Consider the following statements:

Student 1: A
smaller student is always going to move faster because the larger student pushes them harder. Larger people are usually stronger than smaller people, so they have more pushing power.


Student 2: The recoil effect makes the person who did the pushing move backward, but this recoil never makes that person move faster than the person they pushed because their push is directed forward, not backward.

Student 3: Whenever two people interact, they push against each other exactly the same amount. A smaller person moves away from the interaction faster because they have less inertia, it’s easier for that same push to make them move.

Do you agree with any of these students? Explain.


Continue reading →
Dec 7, 2010

Teacher-Driven, Student-Centered

0 comments
The ninth grade physics class at this Quaker school is an example of how a creative and dedicated teacher can make extensive use of resources from a variety of places to design a unique and popular course.

I'm quite partial to the emphasis that Quaker schools place on holistic education, and I think that philosophies of Quaker education match nicely with some the ideas behind Physics First. This particular Quaker school I visited is fairly small. The 70 or so students in a typical ninth grade class are split into four sections, at 15-20 students each section. The physics class is required for graduation, so students who enter the school as a Sophmore or Junior take the physics class along with the ninth graders. The school also offers AP Physics B, which approximately 15 students a year elect to take in their senior.

The school has been teaching physics in ninth grade for many years (15+), and most sections of ninth grade physics have been taught exclusively by one teacher for the past four years. This teacher was a middle school math teacher before teaching physics, at MS104 in NY for six years and at her current school for five, after which she was recruited by the science department to take over the ninth grade class. She has a background in chemical engineering, and worked for 10 years as an engineer before deciding to get into teaching.

I'd been in touch with this teacher for a while before arranging a visit, and she was very generous about sharing the teaching materials that she uses in her course. This is especially notable because she uses a lot of different materials! Though students have access to Hewitt's Conceptual Physics text, the class seemed to be mostly built around activities and handouts that she has found in various places and sometimes altered slightly to better fit her course. (She models for her students a responsible respect for intellectual property by using material that has been distributed online for exactly this purpose, and by citing the author of a resource if she alters it from the original.) In the classes I saw, she made use of or referred to having used: a PhET simulation-based lab activity on graphs of accelerated motion, a handout on skydiving written by JL Stanbrough at Batesville High School, a clip from an episode of the Discovery Channel's Mythbusters (about Keanu Reeves and Patrick Swayze's timeless classic Point Break!), a short lab activity on dropping coffee filters taken from Hewitt's supplementary lab activities book, as well as some handouts of her own design. This type of diversity is exciting to see, and it's evidence of a class that's engaging for students.

To facilitate a discussion on the air resistance on a falling object as it approaches terminal velocity, she employed teaching method that was similar to Ron Thornton and David Sokoloff's Interactive Lecture Demonstrations, or ILDs. ILDs were initially developed for use in large classrooms where the availability of materials and time prevented students from performing their own inquiry-based labs on a topic. Students are given two copies of a handout filled with prompts for predictions and explanations relevant to a demonstration that is performed with equipment large enough to be seen by every student in the room. Before the teacher performs each step of the demonstration, students record predictions and explanations on one copy of the handout, to be collected at the end of class and checked for completion. After the demonstration is performed, students record the correct result and explanation on a copy of the handout that they keep in their notebook. She applied this method to a discussion about the shape of position, velocity, and acceleration graphs of a skydiver approaching terminal velocity. Since the size of her class was rather small, she was able to check student's guesses simply by walking around the room. I was especially impressed at one moment after students recorded their own individual guesses: She gave them permission to discuss their answers with other students in the class, and the room erupted into substantive, engaged conversation. After this, the teacher facilitated a discussion that included references to free body diagrams and a slope analysis of the graphs, and all students seemed quite invested in the explanation of what was wrong about their own graphs (almost every student drew acceleration increasing gradually from the moment of the drop, when the acceleration is the greatest at t=0s). The determined look on the faces of students who had
passionately and convincingly argued a graph that turned out to be incorrect is an excellent example of cognitive dissonance in physics education. (A note about this link: This paper from 1982 examines an approach to teaching the particle model of gases that first exposes students preconceptions, but the first half of the paper gives a nice summary of some relevant cognitive psychology. A student's interpretation of the motion graph of a falling object is certainly more removed from their understanding of the natural world than their picture of the matter they interact with every day. But in comparing their own graph to the correct graph, many students in this class were directly confronted with their own incorrect assumption that acceleration increases as speed increases. The role of identifying "alternative frameworks of understanding" in physics education is a huge topic, one that is certain to come up again in future posts!)

The summer before teaching the ninth grade physics course for the first time, this teacher attended a physics teaching workshop through the Institute for Inquiry at the Exploratorium in San Francisco, CA, during which she was exposed to a wide variety of demonstrations, labs, and online resources. She attributed a lot of her exposure to good physics teaching practices to this workshop, and maintains frequent contact with individuals she met at the program.

The course has evolved significantly since this time, but the central focus of the course has remained constant. After attending the Institute for Inquiry workshop, this teacher made the decision to cover less significantly less content than her predecessor, choosing instead to cover material in greater depth. The content of the course changes from year to year, but her decisions have been informed somewhat by conversations with other teachers in the science department. For example, she does not include thermodynamics because the chemistry class covers these concepts. The decision to remove thermodynamics from the physics class was made after the chemistry teacher taught a section of physics a few years ago. It strikes me that this sort of crossing-over of teachers between the sciences facilitates greater communication between these teachers, and can in turn allow for a more consistent presentation of science throughout a student's high school education. That is, if science teachers at a school are familiar with each other's classes, the language in which concepts are presented in different classes can be more consistent, and the logic of the PCB sequence (physics informs chemistry, chemistry informs biology) can be exploited more effectively. Furthermore, one aspect of the science program at this school that's worth noting is that the format and priority of lab reports is consistent from year to year, through the different subjects. The teacher explained that this consistency was a recent development in the science department, but it's one that was surely facilitated by good communication between teachers in the different disciplines.

The physics classes are split into three sections of Quantitative Physics and one section of Regular Physics (for students that particular difficulties with math). For students that attended Friends for middle school, recommendations on which students belong in which section are made by the middle school math and science teachers. Placement of new ninth graders is based mostly on their performance on a math diagnostic test. Tracking students with difficulty in math allows the difficulty level of the "quantitative" sections to be higher than it would be otherwise, though none of the sections of Quantitative Physics I saw had much of a quantitative emphasis at all. The primary emphasis of the physics class at the school was on conceptual problem solving and exposure to new physics concepts through experience. The tests and quizzes I saw reflected this priority, and the teacher made a point of emphasizing that the algebra-based questions students were asked to solve in her course were never the questions they had trouble with.

The classes I saw on this visit were diverse in their presentation of material, and emphasized student discussion and involvement in activities. The teacher has not attempted to use diagnostics to gauge the effectiveness of the class, but the class fits well with the progression of the classes at the school.
Continue reading →
Nov 22, 2010

One Teacher's Texbook-Based Course

0 comments
I visited this private school a slight drive outside of New York City on a rainy day, and I got a little wet wandering around the campus for a while. I had to ask three people for directions before I was able to find the science wing. My point is that this school is well-equipped, and their campus is BIG and beautiful. The school is not predominantly a boarding school, but some students (and some teachers) live on campus. There are about 100 students in each grade. The ninth grade physics class covers a lot of material, and there is a heavy emphasis on using algebra and even trigonometry to solve quantitative problems. For students that have not had the necessary math, physics teachers teach the math that is needed for the physics class (for example, students are taught how to work in radians in their unit on circular motion and rotational dynamics). Labs make heavy use of technology (PASCO sensors, mostly), and students are given a set of instructions to follow, through which they are generally expected to arrive at an expected result by entering data into a preexisting spreadsheet. In general, the class resembled a traditional eleventh grade physics class taught at the ninth grade.

I had been in touch with the head of the science department and a physics teacher here, for quite a few months before I managed to make my visit. This teacher told me early on in our discussion that he had written his own textbook for their ninth grade course, and I found this intriguing. In talking with him, I learned that this textbook evolved out of his own personal lecture notes. It resembles a standard introductory physics texbook, with some personal touches of specific problem solving methods and terminology he is partial to. For him, this textbook falls somewhere between the difficult level of, say Giancoli's algebra-based text, and Hewitt's Conceptual Physics (He mentioned that he thought that the Hewitt book was too rudimentary for his taste.). This is the first year that they are using this textbook for all students, though ninth grade physics has been taught at the school for about six years. The class seems very popular these days, and a biology teacher who led me to the physics classroom mentioned without prompting that she loved physics first, because her bio students had a solid understanding of chemistry.

I was amazed at how much content the teacher got through in one 90-minute extended period. On their third day of discussing forces, the class began with an introduction to free-body diagrams and concluded with (a) a Newton's second law problem where an upward pull accelerates an object in opposition to gravity, emphasizing the difference between F=ma, and Fnet = ma. He used (b) a force diagram of pushing a book horizontally against a wall to introduce the idea of friction, and spent a few minutes discussing (c) what I would consider a difficult problem of the forces involved when pulling two blocks linked to each other horizontally.
This teacher is an entertaining lecturer, and students seemed engaged for the entire 90 minutes or so, even though they were in their seats for the entire time.
(The net force double arrows in examples (a) & (c) are my own addition... an old habit from my own course.)

I also observed another ninth grade teacher who has been at the school for five or six years, since the early years of their physics first implementation. This teacher was a very charismatic lecturer, and he worked to pull students into his lecture with stories about his past, and fictional narratives about Newton developing the laws of motion. Newton's laws were introduced one after another at the very beginning of the class, on what seemed to be the first day of discussing forces. Students recorded word-for-word definitions in their notes, and discussed with each other questions like, "Which way will an iPod on the dashboard of a car move when the car accelerates?"


In my conversation with the science head, I asked what discussions they'd had around using inquiry-based education. He said that they weren't sure where they stood on implementing more inquiry-style activities, but they were trying to come up with something that would fit.
When I mentioned the FCI, this teacher said he was familiar with the test, but I don't think he uses the test to collect data on the effectiveness of his own class. I get the impression that inquiry-based teaching and a focus on conceptual understanding are both gaining traction in physics classes across the country, but I think that at places with a reputation for high-powered academics (like this particular school), this focus may seem too rudimentary. Both teachers I observed are engineers by training (One also has a Master's degree in physics education.), and they seem to share the view that a difficult physics problem is a physics problem that involves difficult mathematics. Some students in the class were able to solve some tough problems, problems that my own IB Juniors would have had some challenge solving. At times, however, I noticed myself feeling defensive for having set very different priorities in my own course. In a program like the one here, where problem solving is a primary goal, would an individual teacher who wanted to devote more time to inquiry activities (at the expense of content, because inquiry takes SO MUCH TIME to do right!) feel some pressure to get their kids down to business solving more problems?
In summary, it was clear that this school was proud of their academic program, and prioritized a high degree of quantitative problem solving in their ninth grade class. Students are enthusiastic about physics, at least in part due to the very animated personalities of their physics teachers. The course fits well into their entire high school curriculum, and teachers of other subjects feel that the ninth grade course has added to the effectiveness of their own courses.
Continue reading →
Nov 19, 2010

Conversation with a Friend

0 comments
Last Friday night at 1am (!), I ended up having a conversation about science teaching with a friend of mine who lives in DC. She is working for the American Engineering Association on nation-wide campaign to change people's views about what it means to be an engineer. Essentially, the AEA sees much-reduced enthusiasm for the profession, and they're trying to do something about that by changing the public attitude. When our nation's brightest potential physicists and mathematicians spend their time bringing the world's financial system to its knees rather than, say, solving the world's energy shortage, something is certainly wrong. It struck me that high school education provides unique opportunities for influencing students in ways that might make them more inclined to devote themselves to science or engineering.

The meat of this conversation, for me, is in the question of whether we're doing what we want to be doing with our science classes in this country. I mean, clearly we're not, but what do we want to be doing? Measuring gains on diagnostic tests, I believe, can do a good job of measuring the effectiveness of a class to truly teach student what you're trying to teach (That is, I believe that the FCI accurately reveals whether the person taking the test can be called a "Newtonian thinker."), but this certainly isn't the only measure of the success of a science class. If we're trying to encourage our students to want to devote themselves to science and engineering, then the value of an assignment where students are asked to build something with their hands can't be underestimated. Shop class is a rarity these days , and with most of the focus of NCLB or R2T on testing, it ain't making a comeback anytime in the near future.

Maybe one of the best things we can do with our ninth grade physics classes is to generate enthusiasm for the subject through content-based building projects, student-designed experiments, and projects that may not even be all that topical mostly intended to spur creative engineering in students. I considered the 2-Liter bottle rocket project in my ninth grade class to fall mostly into this third category. The project fit into nicely into the class around Newton's third law and conservation of momentum, but it was mostly an opportunity to turn students loose to research and build something cool. It took me a little while to come around to it, since I saw it as less instructive than other activities, but I kept it in the course because my students loved it so much. But after a few years I came to see the primary value of the project was simply that students were working together to build something truly badass.
Continue reading →

About