Showing posts with label Modeling Curriculum Repository. Show all posts
Showing posts with label Modeling Curriculum Repository. Show all posts
Jul 26, 2012

Notes on Consensus

5 comments
Tomorrow is the last day of our Modeling Workshop here in NYC. Everyone involved, from the workshop leaders to the participants (Big digital shout out to @elbee818, @jsb16, @d2thelhurst, and @fernwig!) have been amazing, and to say that I'm going to miss hanging out with these folks all day long is a gross understatement. On the bright side, though, looking back through my notebook on the train ride home today got me chomping at the bit to spend some much-needed alone time working out how I'll be putting this stuff to work with my ninth graders in the fall. As anyone who's completed a workshop has seen, Modeling Instruction is a method, not a curriculum - the worksheets and activities used in any workshop are meant to serve only as a starting point for applying the method to your student population. As I've mentioned before in this blog, it's a fascinating experience to leaf through other Modelers' revisions of activities, and take inspiration for what to include in revisions of my own.

One thing that came up a couple times in our workshop discussions was the role of note taking in a Modeling course. In a classroom that's using a Modeling method, students build all knowledge through consensus. This consensus emerges slowly as students struggle  collectively to interpret empirical observations of a unit paradigm lab, present solutions on a whiteboard, and ask questions about these solutions of their peers. Flashes of insight will come at unexpected moments, often when the class is at its most exciting and engaging, but a more nuanced understanding of the complexities of a model must be built gradually over many days. It seems to me that only the most sophisticated note takers will emerge from a lab or whiteboarding session with detailed records of the knowledge developed during that class period. Students new to Modeling are suddenly asked to think about science in a radically new way, and (by necessity to the inquiry process) often denied access to the resources that they've come to rely on during their previous years as a science student. Sure, some teachers pass out a textbook, but these books turn out to be more useful for building inclined planes than for working through most worksheet problems or lab practica... For ninth graders in particular, this whole new ballgame begins on their very first day of high school, simultaneous to a transition that already induces utter panic. It's my hunch that some minor restructuring of worksheets and other Modeling curriculum resources can go a long way in helping younger students get the most out of this complex process of knowledge-building.

When I was teaching Physics First in a "lab, lecture, & discussion" format, I developed a system of handouts to try to provide students some hierarchical structure for their class notes. (A description of these Notes Outline handouts was published in the "For the New Teacher" column in The Physics Teacher in September of 2011, and you can find an old blog post about my approach here.) Through these handouts, I felt I succeeded in providing a consistent and reliable resource for students in a class where very little emphasis was placed on textbook readings. As I've delved deeper into Modeling Instruction, I've become more convinced that providing some similar structure is crucial to helping ninth graders succeed in a class with such a strong emphasis on higher-order thinking.

I recently revised a few worksheets on force diagrams (click to view, then click on the "Print" icon in the view to download: 1a, 1b, 1c, 2), designed to be used at the beginning of a Balanced Force Particle Model unit with ninth graders. At the end of each of these documents, I've included a blank box labeled Notes on Consensus. In this box I've placed one or two very general questions that are directly relevant to the content of the specific worksheet (I've included one example to the right, mostly just to fancy up my post with a picture... Check out the worksheets themselves to see the scope of the prompts I'm suggesting!). In using these handouts, I plan to call attention to these Notes on Consensus prompts at the beginning of the whiteboarding session for a given worksheet. At the end of the session, I'll direct students to them again with language like, "Remember, it's your responsibility to write down anything that you might need in order to answer this question on your own later on. Can anyone offer suggestions about what would be helpful to include in these notes?" (From my experience with ninth graders, it's necessary to devote verbal cues and class time explicitly to this process.) As the course progresses, I plan to remove the prompts from the Notes on Consensus boxes, and ask students to give their own suggestions about what questions they think should be the focus of their notes. By isolating the most sophisticated and personalized form of note taking in these Notes on Consensus sections, I hope to provide a forum for students to both practice note taking explicitly and construct useful resources for developing content understanding over time.

The idea of prompting students to record notes on class consensus is far from new. Debbie Rice, a co-developer of a collection of Modeling materials designed for use with ninth graders, told me in a phone conversation that if teachers aren't explicitly drawing out class consensus from work done, then they aren't doing true Modeling. On the Modeling Instruction revisions of handouts to accompany Melvin Steinberg's excellent CASTLE curriculum (downloadable from the "Legacy ASU Modeling site"), most worksheets include a blank space marked "Consensus." However, such direct prompts are by no means the norm in most Modeling resources I've seen. Most Modelers encourage students to record corrected solutions to worksheet problems somewhere in the space provided, but I'm not sure that this alone sends the right message about the role of worksheets in the consensus-building process. As a Physics First teacher pointed out after looking over my revisions, placing Notes prompts on the worksheets themselves illustrates explicitly to a student that "the worksheets are a learning process on par with the lab activities... Ninth graders need a clear understanding of when they're expected to be building knowledge and when they're demonstrating knowledge." Furthermore, having specific conceptual targets for a whiteboarding session can help novice Modelers, since "a teacher can pace discussions better when they know they need to uncover certain consensus points by the end of the period."

In thinking about the value of inquiry, I've always wrestled with the degree to which "less is more." That is, when students are building knowledge for themselves, how much top-down scaffolding is too much? For example, it's become strikingly clear to me through this workshop that worksheet problems must be sufficiently ambiguous or open ended to allow for a variety of relevant interpretations. I'm very aware that providing Notes on Consensus prompts will put limitations on how a given worksheet or lab can be interpreted by students, and that this may seem in opposition to others' visions of true modeling. Indeed, one teacher's response to the Notes on Consensus format on these worksheet revisions was more along the lines of a general template for "whiteboarding notes" that includes separate spaces for recording points of confusion and similarities and differences with other groups' whiteboards, but no content-specific prompts. At this point in time I'm convinced that the content-specific prompts will be useful, but only time will tell.

In any case, it's clear to me that there is value to including consistent reflection activities throughout every step of the Modeling cycle. If students learn better note taking skills in the process, that's all the better! I'd love to hear any comments that YOU have on either the Notes on Consensus format, or the specific worksheet revisions I've posted here. If you end up introducing similar modifications to the curriculum resources you use, please, please send 'em my way!!


PS - A huge THANK YOU to Leah Kanner Segal and Lucas Walker for their feedback on the collection of materials I've posted here!

PPS - If you want the MSWord files of the PDFs I've posted, just ask! They're revised versions of the 2010 Modeling materials (revised by Mark Schober, one of the co-leaders of our workshop!), which are available on the main AMTA site, but I've included some fancy new pictures that you might feel like using.

PPPS!! - Speaking of which, those amazing cartoon hands in the worksheet revisions are drawn by cartoonist Jamie Sale. If you feel like trying to draw some hands yourself, Jamie will show you how to do it!!


Continue reading →
May 19, 2012

Sharing Modeling Resources

5 comments
A web-based hub for uploading and distributing Modeling curriculum materials is on the horizon. The potential significance of such a resource is huge, and a healthy conversation at this early stage can help ensure that it becomes both dynamic and user-friendly. 

In preparing materials for my own Modeling-based Physics First course, I've been looking through materials posted on a password protected portion of ASU's Modeling site. In particular, I've been spending a lot of time with two remarkable collections of materials developed and prepared by small groups of teachers in St. Louis (Debbie and Rex Rice, and Gabe de la Paz) and Pittsburgh (Shady Side Academy faculty, including Kathy Malone - recent recipient of the Albert Einstein Distinguished Educator Fellowship). Both collections have firm roots in the Modeling materials originally developed at ASU. However, in addition to revising these canonical materials, both collections also offer entirely original activities and even some major restructuring of the order of the conventional Modeling curriculum. In spending more time with these collections, I've been getting more experience with what I need in order to make efficient use of work done by another teacher, and it's been quite illuminating.

There are quite a few similarities between these two sets of materials. Both collections provide a large text file containing "Teacher Notes" for each unit in the curriculum. (The materials for one such unit are shown in the picture to the right.) These notes generally begin with suggestions on the Scope and Sequence and Instructional Goals of the unit as a whole, then go on to provide details about implementing the activities or worksheets contained within the unit package. Both collections include handouts or worksheets composed in Microsoft Word, and usually include one document file for each physical handout. (For example, a handout made to accompany a lab activity and a homework assignment directly related to that activity are usually included as separate files, sometimes in separate folders/directories.) The documents in both collections are formatted quite precisely, and I experienced frustrating formatting errors when opening some of these documents on my own computer. Most importantly, both collections reflect the great passion and expertise of the teachers who created them, as well as an enormous investment of time.

One key factor in the success of Modeling Instruction, I believe, is that it has been almost entirely teacher-driven. Workshops are run by teachers and interest in the method has spread largely through word-of-mouth. Curriculum resources are developed and shared by teachers as well, though this practice is somewhat cumbersome at the moment. However, like the ASU Modeling site, the online home of the American Modeling Teachers Association (AMTA) is already hosting sets of materials developed by high school teachers, such as the extensive work of Dr. Matt Greenwolfe. This site is going to be updated any day now to include a Modeling Curriculum Repository, in what will hopefully be a big step toward an online hub for Modeling-related resource sharing for teachers by teachers. Like any big crowd-sourcing project, there are some logistical hurdles, but I'll share here some of my thoughts and reactions to how this might be accomplished. 

• Efficient subdivisions of documents can help clarify which materials are relevant to a given topic or activity. Both of the collections I've mentioned were made to be downloaded as a package. As a result, the "Teacher Notes" pertinent to each package are rather lengthy documents. The notes that are specifically related to one worksheet or activity can occasionally be difficult to locate, and isolating one activity from the unit as a whole can be slightly tricky. This makes sense given the overarching goal of Modeling Instruction - Modeling is a unified approach, not a collection of activities to be blended piecemeal into a traditional curriculum. But as more and more teachers convert to Modeling, I believe the need to isolate individual activities will become greater. I think there's a lot to be gained in breaking down these large unit-based collections of files into smaller chunks. Individual files in the unit can contain a few closely related handouts (a couple of related worksheets with teacher notes, for example, or perhaps a lab handout and with both pre-lab and post-lab supplements). I've posted an example of collection of resources I've prepared for an investigation into friction here. 

• Maintaining a hierarchy of organization on the web (rather than within a single .zip file for a unit) can provide both flexibility and manageability to the resource collection. AMTA President Mark Schober has told me that, in his opinion, the ideal resource-sharing mechanism would include access to both individual materials and recommended collections of materials comprising an entire unit. These collections would be curated by an individual or group for use with specific student populations, like playlists of songs curated by notable taste-makers or music communities. The choice of what to include in these playlists evolves over time, and the files contained within the playlists evolve in parallel. The inertia of large collections of curriculum materials can make them slow to change according to teachers' evolving needs and wisdom, and a system based on individual files is bound to be more nimble. 

• If teachers have access to multiple versions of similar materials, user ratings and recommendations can identify versions that are unique, valuable, and appropriate for use with different student populations. This is a model already in place in many communities, including our own community of science educators. For example, exemplary resources designed for use with PhET applets can be nominated for a Gold Star, which identifies "high quality inquiry-based activities that follow the PhET design guidelines and that teachers find useful." The challenge of such a system is to find a balance between maintaining democracy in contributions from individual teachers and keeping the collection of recommended materials concise and manageable for teachers using the site. 

• SBCD - Standards-Based Curriculum Development. Fellow physics blogger Kelly O'Shea just published a fantastic post about bundling established stablished standards for her course to facilitate communication with students about what will be covered on tests. This got me thinking that curriculum materials hosted on the AMTA site might be organized according to standards as well. That is, a worksheet on motion maps could be tagged (in a database and on the document itself) as relevant to one or more standards, such as O'Shea's CVPM1 - I can draw and interpret diagrams to represent the motion of an object moving with a constant velocity. Perhaps the entire Modeling curriculum could be broken down into agreed-upon standards, varying from "I can design an investigation into the relationship between acceleration and mass for a constant force" to "I can solve problems involving the separation of two slits and the distance between bright fringes in an interference pattern from a laser." Specific standards could likely be consistent between courses of widely varying ages and student populations - a more sophisticated course would simply include a wider variety of standards and different supporting materials. For example, the CVPM1 standard above would be a part of a Physics First course and a university course, but the materials used to support this standard might look quite different for such different courses. 

• To avoid formatting errors, documents can be distributed in robust, universally readable file formats. In producing my own curriculum materials, I've taken to saving a version of everything in PDF format, to ensure that I'll always be able to open a specific version to print it out for use in class. Both Greenwolfe and O'Shea have chosen to distribute their materials as PDFs as well. A disadvantage of this method, of course, is that the PDF format cannot be edited, but a text file or word processing document can be included as well to make updates more flexible. Alternatively, a universally available word processing application like GoogleDocs could be used to avoid such formatting inconsistencies. Andrew Stillman, an administrator of the online professional development site YouPD, has advocated such an approach.

Creative Commons is key. Most Modeling documents I've come across have included at the bottom of the page a copyright tag like "© Modeling Workshop Project 2006," indicating that the work in the document stems directly from the original work done at ASU. Sometimes individual authors are identified and sometimes they aren't but this tag ensures that the owner of the intellectual property contained within the document is crystal clear. AMTA Executive Officer Dr. Colleen Megowen has told me that it is a priority for the AMTA to prevent the materials from being used for commercial purposes at any time in the future, but according to this page the copyright isn't explicitly protected against commercial use. It seems to me that without a watertight license, the entity that officially owns a given piece of work (whether it's the AMTA or an individual teacher who has designed their own materials) could at some point choose to restrict access to it, or aim to make a profit off its distribution. There's nothing wrong with teachers making money off of work they've done, but the alternative of an open source Modeling Curriculum Repository seems even more attractive. By attending a workshop, a teacher would be introduced to a wealth of free resources and a community of like-minded peers, both of which would aid them in their transition to Modeling Instruction. In order to protect this dream, a Creative Commons license can be used by any original author of material to prevent the work from being used commercially. Looking through descriptions of the various CC licenses paints some striking pictures of what the Modeling curriculum at large might look like!


Now that I've stepped off my soapbox, let me clarify that this is not intended to be a set of recommendations for how to structure the AMTA site or the files contained within it. Rather, this is just an early collection of personal thoughts on a topic that I find quite exciting. As the work of assembling both the site and the materials goes forward, I hope that this conversation evolves. What are YOUR thoughts?
Continue reading →

About