Showing posts with label videolab. Show all posts
Showing posts with label videolab. Show all posts
Feb 8, 2014

YouTube Frame by Frame

3 comments
I've been looking for a while for a way to watch YouTube videos frame by frame - to encourage rough quantitative analysis of videos directly online without loading them into a video analysis program like Logger Pro. I've had some success with encouraging students to measure position by putting a ruler directly on their screen - but until a few days ago it was quite difficult to get useful clock reading measurements from the YouTube player.


This exercise is MUCH more powerful now, thanks to a simple online app called RowVid, originally created by Calum EadieAndrew Ratomski and Jack Lawrence Jones at an Entrepreneur First Hackathon to help rowers analyze training and race videos. Since then, it has developed into general purpose player for frame by frame and slow motion playback of any YouTube video. When I first stumbled across the player, I got in touch with Calum by Twitter and mentioned to him that the player would be even more helpful for physics classes if it displayed the clock reading of the frame. He made this modification in a matter of hours - AND included in the display an estimate of the uncertainty of the clock reading! In a follow-up email, he mentioned to me that he's "keen to hear how it's being used and are very open to feedback from teachers on how to make it better. Get in touch by tweeting @CalumJEadie." This invitation is open to anyone, so please don't hesitate to make your comments and suggestions known!

A ruler on the screen is perhaps not as accurate as point-by-point video analysis, but it's also much less black-boxish. Students are forced to declare their own reference point and positive direction by placing the ruler on the screen. They see first-hand how to think about a "reference point" when the camera is moving along with the subject, and forced to think about what reference lengths they might use in the frame to scale their measurements to usable values. In other words, they have to everything that they have to do in real video analysis software, but they have to do it by hand - and thereby come to terms with why these steps are important.

For example, one of the essential elements of the "Constant Velocity Particle Model" unit in a Modeling Instruction sequence is determining whether the analytical tools in the model are useful for describing the motion of an object. In my ninth grade class, I've shown students following video of sledders at Brooklyn's Prospect Park with the following prompt:

Choose a sledder in the video. Is the CVPM useful for describing the sledders motion? Collect and graph position data directly from the video to defend your answer with evidence. If you can, estimate the instantaneous velocity of the sledder at one clock reading.



Now I can link directly to the video in RowVid's frame-by-frame player, so students simply click on the link to begin analyzing the motion. Here's a picture of me collecting data on the motion of a sledder in the video. 



I chose somebody on a yellow sled who whizzes by at about t = 13s. When I assume that the sled is about 1.2m long, I get a constant velocity of 5m/s for the 1s time interval. Seem reasonable?



What applications do you see for frame by frame video analysis in your classes? Is analyzing "real-life" motion a theme in your class? What skills does this require that solving "constant velocity" problems from a book or worksheet don't address?

FYI - RowVid is currently working on a version of the app focused specifically on the Sochi Winter Olympics. Let's hope that there are some clips where the camera is steady!



Continue reading →
Sep 29, 2012

VideoLabs as Instructional Videos

5 comments
Today I made a submission to an instructional video contest/program called EDU Guru, sponsored by YouTube, Google, and KhanAcademy (sorry... not gonna link those). Being somewhat of an instructional video skeptic, I tried to use this as an opportunity to illustrate the value of a genre of instructional video that would be less at odds with inquiry instruction. The video I submitted is here:


There's also a companion video which shows the force meter readings for 65 mph, so a student who makes the prediction could then check it against actual measurements. I included a link down below1, but I recommend collecting the data and making the prediction yourself before ruining the surprise!

I've called it a VideoLab in conversations with friends. My hope is to create quite a few more of them this year. The relationship depicted here, of course, is less central to most introductory physics courses. We generally ignore air resistance precisely because it's messy, as the uncertainty in these measurements shows2. But I think it's actually pretty remarkable how even a system as gnarly and variable as this one can fit a simple model (as long as you give yourself some healthy error bars). In any case, the model of an "instructional video" that contains everything you need for collecting and analyzing quantitative data on a relationship could be quite powerful. It's no substitute for hands-on work, of course, but students who wouldn't otherwise have access to a proper physics lab (or simply missed class on lab day) could benefit greatly. Imagine if a whole slew of VideoLabs were accessible online... How 'bout it, folks? #videolab?

There's at least one precedent for using video this way, in the wealth of videos created and hosted by Rutgers Graduate School of Education (where I am currently a student!). Each of the videos on this site is designed to serve as part of a cycle in which students observe a phenomenon, form a hypothesis that explains what they've seen, consider the implications that their hypothesis might have for further observable data, then make a "testing observation" to see whether what's depicted in the video agrees with the prediction they made. The video I've made here is similar, but my goal is more to present students with data that can be analyzed quantitatively, in a style similar to the analysis of data collected during a paradigm lab of a Modeling Instruction unit.


I still plan on making a few more companion videos, including a qualitative "observation-oriented" video that could be used for asking, "What could we change? What could we measure?" before any instruments are shown. I have a lot of footage of stuff sticking out of my car window, and I want to make good use of it!! Maybe the next step is just to upload a bunch of raw footage set to a soundtrack of Empire State of Mind. Concrete jungle where dreams are made of... videos about air resistance! So that's how the line is supposed to end!



1 65 mph check video here!

2 I also did the same experiment with a flat disk instead of a plastic bag (a cd, as you can see from the picture above), but it's a lot less fun to watch and the numbers are no less messy. I'm planning on editing that together too though, for comparison's sake, when I get a moment.



Continue reading →

About