Pages

Feb 19, 2013

Practicing Struggle at Home and in Class

Encouraging students to practice struggling has the potential to promote perseverance that can carry over into life pursuits unrelated to physics class. But the context in which this struggle takes place will influence whether students associate it with success or repeated failure, and this can have great implications for how they approach new challenges in the future.

Since I first began teaching, I've tried to make "practicing struggle" an important element of my classes. This was partly a matter of necessity, since concepts would sometimes take weeks to develop and students would have to cope with "not knowing" answers to some very central questions as we slowly worked toward more sophisticated understanding. When I came across Modeling Instruction, it seemed to fit in nicely with this emphasis. I'd interpreted the focus of Modeling to be on building physics understanding from scratch through experiments and analysis, and I knew that this would take a lot of struggle and failure along the way. Invariably, I assumed, this would mean plenty of learning from failure, as well as learning to fail, along the way.

I tried to emphasize this to my students again and again. After completing The Marshmallow Challenge on the first day of school, I posted the diagram on the right on the projector and we talked for ten minutes about what it could mean for our class. I included the diagram on a handout explaining my policy of standards-based grading. I taped a copy to the back of my gradebook, and I'd hold it up when new understanding was emerging from our conversation about a tricky new concept that no one had grasped the first time around. When I used a homework assignment to introduce for the first time a problem that required a new concept or technique, I emphasized that students' only responsibility was to TRY. Even if they didn't necessarily SUCCEED or LEARN much the first time around, we'd struggle in small groups and struggle as a whole class until we'd figured it out. But to my great dismay, most didn't seem to become any more comfortable with approaching new ideas in this way, even after months of practice.

I've long been convinced that Physics First is as much about teaching critical thinking and problem solving skills as it is about teaching physics, and perseverance through confusion and frustration is clearly a crucial part of this. I'm certainly not alone in focusing on how we might better develop such character-related skills. Some schools have gone so far as to issue character report cards to assess how these traits are developing, encouraged by psychologists' study of the predictive power of traits like "grit" on performance in and after college. By assigning homework containing material that students hadn't worked with in class, I hoped that I was giving students an opportunity to practice their perseverance, and thereby develop "truer grit." But morale among my students was quite poor much of the time, and the pace of the class has been extremely slow. For a while, students frequently expressed frustration that they never knew what to do on homework, that they were endlessly confused, that they couldn't tell when we reached consensus in class discussion, and worst of all that they couldn't even tell when their own thinking was on the right track.

Practicing struggle? Check. But it was clear that my students hadn't been benefitting from this practice as I'd hoped they might...

I have a colleague who, like fellow blogger Kelly O'Shea, is convinced that homework as it's traditionally assigned isn't effective. My colleague teaches two sections of the "Advanced" Physics First course, and rarely assigns required homework. Citing arguments by Alfie Kohn, he feels strongly that students should be free to do whatever they need to do outside the class to succeed, and free to make these decisions on their own. Kohn's arguments are indeed convincing, and my students' comments echo some of his conclusions precisely. In a 2006 article, Kohn wrote about homework:


It isn’t of any use for those who don’t understand what they’re doing.  Such homework makes them feel stupid; gets them accustomed to doing things the wrong way (because what’s really “reinforced” are mistaken assumptions); and teaches them to conceal what they don’t know.

However, many of my students in the "Regular" physics sections lack the perspective to recognize when they need more practice, or the maturity to prioritize this practice when it's not due the next morning. Required homework, if it's not graded for correctness, can provide some much-needed guidance and scaffolding of how one might spend time effectively outside the class. I agree with homework critics that busy work promotes a false sense of security (or worse), but for a ninth grader, total freedom to choose when and how to engage with a course can be quite crippling. My students were generally embracing the guidance I was trying to provide, but despite my best intentions it was clear this guidance wasn't nearly as effective as it could be. Rather than teaching students that struggle could be rewarding, valuable, and even enjoyable, I seemed to be teaching them to dread encountering a new idea for the first time.

In my simple sequence of 1) personal struggle, 2) small group struggle, 3) whole class struggle, the most confusing and difficult stage of the process has been taking place in an environment where a student can feel alone, insecure and vulnerable. In this context, individual struggle comes to be associated with fear, anxiety, and anger (the list goes on), all of which are detrimental to real learning. If my goal is to teach students to be comfortable with their confusion, this initial stage has to come in an environment they have a fighting chance of actually building confidence. Working with others in small groups is beneficial not only because more ideas are brought to the table, but also because students see others like themselves break through from confusion to understanding. But solidarity can cut both ways: students can band together to work together to puzzle through a new idea, or they can feed off each other's anxiety and confusion. This stuff doesn't make sense to anyone... Why should I even try? is a fire I've had to put out many times this year, but it's almost always come at the beginning of a class period, when students have all wrestled with a challenging new idea on their own the previous night.

This is not to say that students shouldn't be asked to struggle with new ideas on their own - quite the opposite. If struggle is going to be developed as an individual skill, students have to practice struggling individually. To some extent, this will happen with a well-designed practice assignment, where students have to apply and expand on work that began in class when tackling a new problem at home. Moreover, after students have practiced struggling "class first" for a few months (or more, depending on the students), they may build up confidence that can be directed toward working with brand new ideas on their own as well.

We want students to embrace and enjoy the process analyzing a tricky new situation in an inquiry-based physics class. Since the first stages of this process can sometimes resemble a game of pin-the-tail-on-the-donkey, it's reasonable to think that the teacher should be there to at least point them in the general direction of the donkey and put the tail in their hand, or that other students should be there to offer suggestions and cheer them on. I'm convinced that the ability to work through confusion and emerge with better understanding is a skill to be honed through repeated practice, and I've come to see that the early stages of this practice are crucial in the development of the skill. But if students are going to embrace the cycle of "TRY - FAIL - LEARN - REVISE - SUCCEED" they need to associate their struggle with success, not repeated failure. Otherwise, there's simply no incentive to bring themselves to new physics assignments again and again. Worse yet, there's no chance of building perseverance for life pursuits that will take much longer to develop than any physics concept.

4 comments:

  1. Thanks for this reflection. I have often been frustrated with teaching philosophies that encourage "struggle" because yes, it's a great thing to learn... but that fail to realize that if students don't expect success, that it simply *reteaches* failure as Alfie Kohn described and extends it from homework into the classroom so it's a universal experience.
    What does "try" mean, anyway?
    I've talked many students through the thought process of solving a problem... in math, it's first confronting that absolute certainty that this is not something I know how to do... or that there just isn't enough information... and then reminding myself that well, actually, it *is* a problem people do successfully... and then asking questions such as: what *do* I know about this problem? What are the parts of this that I don't like, and do I know some way of changing that so that it's a problem I can do?
    When I was taking a graphic arts class and got utterly stuck with the software, and was ready to get up and leave, I reminded myself that no, actually, there really was supposed to be a way to do this... and managed to figure it out. Had I not recognized the failure cycle of my thinking, though, and consciously re-routed it, I would have gone on believing that I just couldn't do that stuff.

    ReplyDelete
  2. Thank you for this wonderful comment! "What does 'try' mean, anyway?" is a GREAT question, and an extremely hard one to answer. Of course, it has many different answers, depending on the student, the content, and all sorts of other factors.

    As you point out, learning how to answer to this question for yourself is a huge part of developing this perseverance in the first place. This is one of the biggest metacognitive skills that we're trying to focus on when we ask students to push themselves into uncomfortable territory, and to "take risks."

    I'm starting to realize that as we shift our classes away from modes of work that students are familiar with (reading a textbook, making flashcards to memorize definitions, practicing context-less problems to drill a certain procedure), it become increasingly important to suggest new possibilities for strategies that might prove successful. In other words, it's obvious to ME that looking back through previous interpretations of slope to try to figure out how to interpret this new slope would be helpful, but it may not be obvious to my students. Taking on this challenge goes hand in hand with developing content understanding... they're inseparable.

    ReplyDelete
  3. FYI -- Kelly O'Shea ia an awesome *female* Physics teacher. Terrific post.
    Yours in the struggle!

    ReplyDelete
  4. I like your blog, this information is very useful for every students.

    Subject Teachers

    ReplyDelete