Pages

Sep 29, 2012

VideoLabs as Instructional Videos

Today I made a submission to an instructional video contest/program called EDU Guru, sponsored by YouTube, Google, and KhanAcademy (sorry... not gonna link those). Being somewhat of an instructional video skeptic, I tried to use this as an opportunity to illustrate the value of a genre of instructional video that would be less at odds with inquiry instruction. The video I submitted is here:


There's also a companion video which shows the force meter readings for 65 mph, so a student who makes the prediction could then check it against actual measurements. I included a link down below1, but I recommend collecting the data and making the prediction yourself before ruining the surprise!

I've called it a VideoLab in conversations with friends. My hope is to create quite a few more of them this year. The relationship depicted here, of course, is less central to most introductory physics courses. We generally ignore air resistance precisely because it's messy, as the uncertainty in these measurements shows2. But I think it's actually pretty remarkable how even a system as gnarly and variable as this one can fit a simple model (as long as you give yourself some healthy error bars). In any case, the model of an "instructional video" that contains everything you need for collecting and analyzing quantitative data on a relationship could be quite powerful. It's no substitute for hands-on work, of course, but students who wouldn't otherwise have access to a proper physics lab (or simply missed class on lab day) could benefit greatly. Imagine if a whole slew of VideoLabs were accessible online... How 'bout it, folks? #videolab?

There's at least one precedent for using video this way, in the wealth of videos created and hosted by Rutgers Graduate School of Education (where I am currently a student!). Each of the videos on this site is designed to serve as part of a cycle in which students observe a phenomenon, form a hypothesis that explains what they've seen, consider the implications that their hypothesis might have for further observable data, then make a "testing observation" to see whether what's depicted in the video agrees with the prediction they made. The video I've made here is similar, but my goal is more to present students with data that can be analyzed quantitatively, in a style similar to the analysis of data collected during a paradigm lab of a Modeling Instruction unit.


I still plan on making a few more companion videos, including a qualitative "observation-oriented" video that could be used for asking, "What could we change? What could we measure?" before any instruments are shown. I have a lot of footage of stuff sticking out of my car window, and I want to make good use of it!! Maybe the next step is just to upload a bunch of raw footage set to a soundtrack of Empire State of Mind. Concrete jungle where dreams are made of... videos about air resistance! So that's how the line is supposed to end!



1 65 mph check video here!

2 I also did the same experiment with a flat disk instead of a plastic bag (a cd, as you can see from the picture above), but it's a lot less fun to watch and the numbers are no less messy. I'm planning on editing that together too though, for comparison's sake, when I get a moment.